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A B S T R A C T   

Over the past decades, classical optimization methods, including gradient-based topology optimization and the 
evolutionary algorithm, have been widely employed for the inverse design of various photonic structures and 
devices, while very recently neural networks have emerged as one powerful tool for the same purpose. Although 
these techniques have demonstrated their superiority to some extent compared to the conventional numerical 
simulations, each of them still has its own imitations. To fully exploit the potential of intelligent optical design, 
researchers have proposed to integrate optimization methods with neural networks, so that they can work 
coordinately to further boost the efficiency, accuracy and capability for more complicated design tasks. In this 
mini-review, we will highlight some representative examples of the hybrid models to show their working 
principles and unique proprieties.   

1. Introduction 

Mimicking the operations of animals’ brain activities such as 
recognizing the features of objects from different classes, artificial 
neural networks, or simply neural networks (NNs), form the backbone of 
the deep learning algorithms [1–4]. In a typical neural network, data 
pass through successive layers. The weights of nodes, or so-called neu
rons, in each layer are updated iteratively through the forward and back 
propagation procedure, completing the training process of NNs. Recent 
studies have shown that with the ability to learn the features from the 
training dataset, NNs can perform forward prediction and inverse design 
of various photonic structures, creating an exciting paradigm at the 
intersection of photonics and artificial intelligence [5–9]. For the for
ward prediction, the properly trained NNs can substitute the conven
tional time-consuming numerical simulation, since NNs can easily and 
accurately predict the optical response once the geometries and or ma
terial distribution are given. For the inverse design, NNs function in the 
opposite way. In other words, NNs can retrieve the optimal structure in 
order to achieve specific target responses or functionalities. These tasks 
might be very complicated and challenging by conventional 
parameter-sweeping-based design methods. Different NNs including 
fully connected neural networks [10–14] and convolutional neural 
networks [15–18] have been used in the photonic design, depending on 

the objectives and dimensions of the input/output parameters. Appli
cations such as multi-band absorbers [19], chiral metamaterials [20], 
near-/far-field prediction [21], and vector field generation [22] have 
been successfully demonstrated. 

Although NNs can effectively assist modern intelligent photonic 
design, they still have their limitations. For instance, we need to care
fully select the configuration of NNs based on our expertize or empirical 
knowledge when dealing with specific applications. Moreover, large 
datasets, which are usually produced from intensive numerical simula
tion, are required for the training process. On the contrary, traditional 
inverse design approaches, such as adjoint-based topology optimization 
and genetic algorithms, have inherent drawbacks like time-consuming 
numerical calculations or simulation processes, although they have 
been used in a variety of applications. As shown in Fig. 1, it is of great 
interest to build hybrid models by combining NNs with other classical 
optimization algorithms, so that we can overcome their respective lim
itations, handle complex problems, and enhance the performance of the 
final design. Indeed, over the past years, people have devoted substan
tial efforts to explore this new direction. The research findings show that 
there are several advantages of such a hybrid approach.  

(1) Conventional optimization methods can help to enhance or 
optimize the NNs including the training dataset, the structure of 
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the network, hyperparameters, and even the weight updating 
process. These factors determined the final performance of the 
NNs. However, the setting of them is always based on experience 
or laborious modification. With the help of optimization 
methods, the efficiency and accuracy of the NNs can be enhanced 
without manual interference.  

(2) NNs can serve as an extremely fast electromagnetic solver in the 
inverse design process based on different optimization methods. 
For conventional optimization, time-consuming full-wave simu
lations are often required in each iteration. However, this step 
can be replaced by well-trained NNs to greatly accelerate the 
running time while maintaining high prediction accuracy. Pre
vious works have adopted this method and demonstrated orders 
of magnitude speedup.  

(3) The model may gain more advantages from the combination of 
optimization and NNs in a complex way. In some works, the 
optimization algorithm and NNs would function and update at 
the same time during the iteration precession, meaning that they 
would mutually benefit each other. For example, genetic algo
rithm (GA) can help to select better solutions that can be used in 
the training dataset while the NNs will learn from the optimized 
dataset and update the forward and inverse model with better 
accuracy. In this way, we can generate comparable results but 
with much smaller training data. 

In this review, we will provide specific examples that combine 
optimization algorithms with NNs and discuss in detail their impacts on 
the final performance of the model and the device, in order to help the 
readers to better understand the three major advantages of the hybrid 
models mentioned above. The remainder of the review is organized as 
follows. In Section 2, we will discuss inverse photonic design by 
combining topology optimization (TO) and adjoint methods with NNs. 
In Section 3, we will show how to optimize the performance of NNs by 
introducing GA, a widely used non-gradient-based algorithm, to the 
hybrid model. Some other non-gradient-based inverse design ap
proaches, including the Bayesian algorithm and Gerchberg–Saxton al
gorithm, in conjunction with NNs will be discussed in Section 4. We will 
cover the fundamentals of the specific hybrid methods and highlight the 
representative examples that exhibit exceptional performance when the 
optimization approach and NNs are combined. Finally, we will provide a 
summary and briefly discuss the future prospects in the conclusion 
section. 

2. Fusing topology optimization and adjoint method with neural 
networks 

TO is one of the most frequently utilized approaches for inverse 
design based on gradient descent [23–30]. The topology of the photonics 

device, which specifies the material distribution pi for each pixel inside 
the design region, needs to be optimized to fit the target function F to the 
greatest extent during such process. An initial set of the input parame
ters are provided by the model, then the information of the gradient, i.e., 
∂F/∂pi, can be obtained by electromagnetic simulation. Intuitively, a 
number of simulations (linearly scaled with the parameter number) need 
to be performed to reveal the gradient for the current parameter set, 
which are time-consuming and computationally expensive. However, 
this step can be accelerated by the adjoint method, where only one 
forward and one adjoint simulation are needed regardless of the amount 
of the parameters. Applications of TO in the design of wavelength 
demultiplexer [23], photonic crystals [24], and metagratings [25] have 
been demonstrated in recent years thanks to the merits of the adjoint 
method. In this section, we will discuss how TO and adjoint method can 
help to advance the development of NNs and vice versa. 

Owning the ability to optimize the device performance by adjusting 
material distribution, TO can potentially improve the quality of the 
training dataset and even the post-processing of NNs. For instance, Z. 
Kudyshev and co-workers have recently proposed to merge TO with NNs 
to realize high-efficiency thermal emitters, which comprise plasmonic 
nanostructures based on transition metal nitrides [31]. Their approach 
shows greatly enhanced performances, including 4900 times faster 
optimization search, and maximum efficiency of 98% compared to 92% 
from the direct TO method. The top panel in Fig. 2a illustrates the model 
framework. An adversarial autoencoder (AAE) network, which can be 
regarded as a combination of variation autoencoders (VAEs) and 
adversarial learning such as generative adversarial networks (GANs), is 
applied to compress the pre-optimized input pattern into the 15-dimen
sional latent space and generate highly efficient designs from randomly 
sampled latent variables. The workflow of this optimization process 
mainly consists of three steps. First, the gradient-descent-based TO is 
applied to generate data for the training dataset. Then, the optimized 
patterns are sent to the encoder to compress them to the latent space, 
similar to the data compression process that can shrink the data from a 
higher to lower-dimensional space in VAEs. Since a large dataset is 
needed for the training process but the TO of each design is realized by 
the adjoint method that requires two time-consuming finite-difference 
time-domain (FDTD) simulations, the author augment the data from 200 
to 8400 by considering the translation and rotation of the original 
structures. The discriminator then forces the latent distribution to fit the 
predefined distribution and the encoder generates a large set of designs 
from the latent space. In the end, the generated structures are refined by 
additional TO to eliminate sub-precision features as well as low-efficient 
and unstable designs. The authors suggest using pre-trained CNN, which 
can be regarded as a smaller version of VGGnet, to filter appropriate 
designs in order to accelerate the refinement. The comparison between 
the conventional cylindrical structure, direct TO, and AAE + TO can be 
found in the three figures at the bottom of Fig. 2a. A mean efficiency of 
90% and a maximum efficiency of 98% can be realized by the AAE 
design, which is superior compared to other methods. The absorptio
n/emissivity spectra of the best designs also validate the optimization 
performance regarding uniformity and efficiency. Moreover, the 
AAE+VGGnet method only takes 2 minutes to generate 100 highly 
efficient designs with efficiency higher than 80%, while the computation 
time of direct TO and AAE + TO are around 164 hours and 64 hours, 
respectively. Here, TO serves two purposes: first, it is used to enhance 
the training set’s quality and the NN’s performance in the first phase; 
second, it aids in post-processing to ensure that the design is reliable and 
realistic. Subsequently, the same group reported that by connecting the 
AAE network with a differential evolution optimizer, the multi
parametric global optimization can be performed in the compressed 
design space, giving rise to a greatly enhanced optimization search ef
ficiency [32]. 

Apart from using TO to enhance the performance of NNs, adjoint 
method, which is the backbone acceleration strategy for TO, can also be 
blended with NNs to help to retrieve the gradient information of NNs by 

Fig. 1. Illustration of the workflow of combining classical optimization 
methods with neural networks. 
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employing one forward and one adjoint simulation. Recently, J Jiang 
et al. proposed an interesting approach to integrating the adjoint method 
with NNs for optimizing diffractive metagratings [33]. Prior to this 
work, the same group already demonstrated that the adjoint method can 
help with the TO of metasurfaces to deflect light at large angles with 
high efficiencies [25]. In this paper, they further improve the perfor
mance of the metagrating with global topology optimization networks 
(GLOnets), which are constructed by incorporating the adjoint method 
with generative optimization networks. As shown in Fig. 2b, the 
deflection angle θ, wavelength λ, and random noise vector z are fed into 
the NNs as input and then processed by the fully connected layers and 
the deconvolution layers. After applying a Gaussian filter to ensure that 
the generated pattern meets the minimum feature size for fabrication, 
metagratings with certain refractive index distributions within the 
design area are generated. Different from the conventional NNs, in 
which the objective function can be directly calculated, this 
physics-driven approach uses forward and adjoint simulations for a 
batch of structures to obtain gradient descent information of the 
objective function. Then the gradient will be averaged and back
propagated to update the weights of neurons. The training process in 

GLOnet is essentially identical as the iteration in conventional adjoint 
algorithms by applying the chain rule again, so that the gradient can be 
further backpropagated to the network parameters. By iteratively 
updating the parameters of the NNs, the diffraction efficiency at the 
desired angle and wavelength is optimized. The authors have made a 
comparison between the GLOnet and the adjoint method, confirming 
that the NNs show better or similar results compared to the conventional 
approach. More specifically, 500 devices are designed and optimized for 
each wavelength and angle pair using GLOnet and adjoint-based TO, and 
it turns out that 75% of the devices from the conditional GLOnet have 
efficiencies higher than those from adjoint-based optimization. As a 
result, the GLOnet, once trained, can perform inverse design more effi
ciently compared to conventional TO. Additionally, using the traditional 
adjoint method, the inverse design process must be repeated whenever 
the target function, such as the required deflection angle or working 
wavelength, is modified for new tasks. Retraining the GLOnet model, 
however, is not required for distinct target functions at different wave
lengths or deflection angles. 

For the inverse design with the aid of NNs, the Tandem model [10] 
and invertible NNs [34] have shown their potential to avoid the 

Fig. 2. Fusing topology optimization and adjoint method with neural networks. (a) Top: Workflow of AAE-assisted topology optimization for thermal emitter design. 
Bottom: Normalized efficiency, absorption/emissivity, and the computation time of the thermal emitters designed by different methods. (b) Schematic of GLOnet for 
metagrating design, where the gradient solving process is replaced by the adjoint method simulation. (c) A neural-adjoint method for universal inverse design tasks. 
Top: Illustration of the forward model training process and the inverse design by the backpropagation of NNs. Bottom: Comparison of the performance of 6 models for 
4 different situations. (d) Comparison between the target function, numerical results, and inversed design prediction of the scattering cross-section of a multi-layer 
nanoparticle. 
(a) is reproduced from Ref. [31] with permission; (b) is reproduced from Ref. [33] with permission; (c) is reproduced from Ref. [35] for permission; (d) is reproduced 
from Ref. [36] with permission. 
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one-to-many mapping problem and provide an effective solution for the 
target objective function. Inspired by the conventional adjoint method, 
S. Ren has proposed a neural-adjoint method [35] and proven that for 
various benchmark activities, this straightforward strategy can yield the 
most accurate results in comparison to other approaches in several 
specific tasks. As shown in Fig. 2c, the workflow of the neural-adjoint 
method consists of two steps. First, a forward NNs to evaluate y =
f(x), which connects the design and the optical response y, is con
structed and trained in a conventional manner by a pair of input and 
output dataset. Then for a user-define target, a loss function L is defined 
between predicted (ŷ) and true (y) responses. The gradient ∂L /∂x is 
used to implement descent towards locally optimal x values similar to 
other classical optimization algorithms. With the help of NNs built in the 
first step, a closed-form differentiable expression for the simulator can 
be obtained, which can simplify the process of gradient descent. 
Furthermore, the additional term for the loss function called boundary 
loss, is considered in the neural-adjoint method to increase the likeli
hood that solutions would be created inside the training data domain, 
resulting in more accurate solutions when evaluated by the simulator. 
Compared to other models, the neural-adjoint method shows the lowest 
error among all models, tasks, and the number of samples that are 
considered, since it can search the whole x-space and precisely localize 
inverse solutions. However, the disadvantage of the neural-adjoint 
method also exists: it may easily reach a poor local minimum for com
plex design problems. Therefore, a good initial design that is close 
enough to the global minimum will be beneficial. There are a few 
published papers that use a similar method to solve specific inverse 
design problems. For example, as shown in Fig. 2d, J. Peurifoy et al. 
have reported that the light scattering of the multilayer nanoparticles 
can be optimized by NNs [36]. For the forward model, the input pa
rameters of the NNs are the thickness of each layer with fixed materials 
and the output is the spectrum information. 50,000 examples are 
generated from the transfer matrix method for the training dataset and a 
fully connected network with four layers and 250 neurons per layer is 
trained with those data. First, they verify that their NNs can accurately 
predict the spectrum of the test structural parameters referring to the 
sharp peaks and high quality factors. Then, they run the NNs “back
ward” by using the analytical gradient for inverse design applications. 
Finally, the authors compare the NN-aided inverse design and other 
numerical nonlinear optimization methods, and find their approach has 
better performance with respect to the accuracy of the reconstructed 
spectrum. Moreover, compared to the full-wave simulation, the running 
speed for the inverse design process has been accelerated more than 100 
times. 

3. Integrating evolutionary algorithm with neural networks 

An evolutionary algorithm (EA) is a metaheuristic algorithm based 
on generic population [37,38]. With the ability to efficiently solve global 
optimization problems by mimicking the processes of selection, repro
duction, mutation, and crossover in nature, it has become one of the 
most popular inverse design methods for integrated photonics and 
planar optics [39–42]. Using this method, researchers have successfully 
demonstrated waveguide couplers [43], waveguide routers [44], 
waveguide reflectors [45], broadband and full-color meta-holograms 
[46], and wavefront shaping [47]. In the following, we will focus on GA, 
a typical EA, as the example. The workflow of GA mainly involves four 
steps: First, the initial population is generated randomly, containing a 
certain number of chromosomes with genes that denotes the input 
variables. Then, the fitness score, a numerical indicator of how well a 
proposed solution fits the requirement, is calculated for the parents. The 
finest individuals will be chosen using a selection procedure based on a 
roulette wheel and the fitness score. In the next step, the individuals 
inside the population exchange the genes of parents to reproduce 
offspring. Finally, after adding the offspring to the population, random 
mutation is executed so that the population is gradually evolved towards 

the optimized solution. This four-step process normally repeats several 
times before the termination requirement is met. Despite the fact that 
GA has been used extensively for inverse design over the past decades, 
only until recently have people proposed to combine GA with NNs to 
improve the performance of the photonic design [48–50]. We will 
discuss various integration strategies for GA and NNs for different ob
jectives in this section. For example, GA can assist in configuring the 
hyperparameters of NNs or choosing the meta-atoms for the supercell. 
On the other hand, NNs can also be combined with traditional GA to 
significantly improve its performance and operation speed. 

In 2019, T. Zhang et al. proposed to use the GA to design the network 
architecture and select the hyperparameters for NNs [51], as shown in 
the top panel of Fig. 3a. As a result, precise spectrum prediction and 
inverse design of plasmonic waveguides can be realized by the opti
mized NNs. The hyperparameters of a neural network, including the 
number of layers, neurons per layer, the optimizer for weights, and the 
activation functions at the end of each layer, determine the final per
formance of the neural networks. However, in the conventional model 
building process, the setting of the network is always based on prior 
experience or laborious commissioning. In contrast, in this work, the 
four hyperparameters are set as the variables of GA to optimize the 
performance of network architecture, which can be indicated by the 
fitness scores of different generations. After it reaches a high value, the 
prediction accuracy, convergence, and calculation time can be 
improved. For spectrum prediction, the structural parameters including 
the length, width and gap distance of the cavities are fed into the NNs to 
obtain the transmission response of a plasmonic waveguide. The fitness 
scores of three structures THRC, FORC and FIRC, which stands for three, 
four and five rectangular cavities, show that the accuracy of the models 
can be iteratively improved (bottom left panel of Fig. 3a). The trans
mission spectra predicted by the optimized NNs can perfectly match the 
FDTD simulation result (bottom right panel of Fig. 3a). 

Another interesting topic that can benefit from introducing EA to 
NNs is the design and optimization of complex metasurfaces [50,52,53]. 
As shown in the top panel of Fig. 3b, Z. Liu and co-workers present a 
hybrid framework that combines a compositional pattern-producing 
network (CPPN) and cooperative coevolution (CC) to deal with the in
verse design problem of metamolecules composed of multiple 
meta-atoms with complex topologies [52]. The target function of this 
metasurface design is polarization conversion and anomalous wave 
deflection. The CPPN, which is widely used as the generator of the 
generative network, can decode a batch of latent vectors including xi, yi, 
ri and a bias vector v to candidate patterns consisting of si at each pixel. 
Then CC is utilized to retrieve a set of vectors v in the latent space that 
can meet the target functions, specifically, the output polarization state, 
intensity, and phase distribution. To shorten the running time of the 
model, the authors execute the full-wave simulations of 8000 
meta-atoms with various shapes and use the results to train a neural 
network simulator. In the end, by integrating two meta-atoms inside one 
metamolecule selected by the CC method as shown in the bottom panels 
of Fig. 3b, the authors verify the polarization conversion from 0◦ to 30◦

and 45◦ with linearly polarized incidence. They also implement the 
design of a metasurface, in which the supercell has eight meta-atoms. 
The metasurface can convert left circularly polarized light to its 
cross-polarization (i.e., right circularly polarized light), and deflect the 
cross-polarized light to a specific angle. Very recently, the same group 
has published another paper that combines NNs with an EA-based 
optimizer to design cascading layers of metasurfaces with multifunc
tional capabilities [53]. The total response of the multilayer supercell is 
calculated by the matrix-chain multiplication of the wave matrix and 
optimized by an EA optimizer. Complex functions are achieved, 
including a polarization-multiplexed dual-functional beam generator, a 
second-order differentiator for all-optical computing, and a 
space-polarization-wavelength multiplexed hologram. 

Thanks to its ability to significantly speed up the calculation for the 
optical responses of unknown devices, pre-trained NNs can replace the 
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electromagnetic solver in the traditional inverse design method to 
accelerate the evaluation of candidate structures. Moreover, for the 
structure that can be characterized by a smaller number of structural 
parameters, the hybrid model can be further simplified. For instance, S. 
S. Panda and R. S. Hegde reported a surrogate-assisted evolutionary 
optimization method for the inverse design of metagratings with the 
functions of spectral filters and color splitters [54], as shown in Fig. 3c. 
Different from other works, the main framework in this model is the EA 
while the NN serves as the electromagnetic solver to evaluate the per
formance of the individuals in the population. The extended unit cell of 
the metagrating consists of several elliptical nanopillars without spatial 
overlapping, and then a model based on the framework of differential 
evolution optimization is built to search the full geometrical parameter 
space. Different from the conventional EA, the electromagnetic solver 
that can evaluate the loss function of each design inside the population is 
replaced by a pre-trained NN model to greatly accelerate the numerical 
optimization process. The authors have also discussed how the sampling 

method of parameter space and different feedforward architecture affect 
the final performance. Finally, they demonstrate three inverse design 
examples including polarization-insensitive RGB color filter, 
polarization-dependent RGB color filters, and RGB color splitters as 
shown in the bottom panel of Fig. 3c. Compared to feedforward archi
tecture trained with randomly selected samples, deep neural network 
(DNN) architecture trained with k-means clustering strategy shows 
better performance regarding the fitness of the target spectrum and color 
purity in most cases. 

For all the aforementioned hybrid frameworks, a large amount of 
data generated from the electromagnetic simulation are always required 
to train the NNs. Recently, Y. Ren have proposed a more flexible GA- 
based deep neural network method that only needs less than 3000 
simulation data for the training process, an order of magnitude fewer 
than the previous works [55]. The basic workflow is presented in 
Fig. 3d. First, the initial polar vectors that describe the boundary of the 
optimization area and their numerical simulation results are encoded as 

Fig. 3. Integrating evolutionary algorithm with neural networks. (a) Top: Illustration of the model framework for plasmonic waveguide design. Bottom: The fitness 
scores of three models for different generations, and the respective transmission spectra from FDTD simulation and NNs. (b) Top: Schematic of a hybrid model for 
metamolecules design. Bottom left: Schematic of the metamolecules’ structure. Bottom middle and bottom right: Scanning electron microscope image of the 
fabricated samples and the measurement results for converting the incident polarization direction from 0◦ to 30◦ and 45◦. (c) Top: Illustration of the surrogate- 
assisted evolutionary optimization method. Bottom: Simulation results for RGB color splitters. (d) Illustration for inverse design of on-chip beam splitters enabled 
by GA-based deep neural networks. 
(a) is reproduced from Ref. [51] with permission (b) is reproduced from Ref. [52] with permission; (c) is reproduced from Ref. [54] with permission; (d) is 
reproduced from Ref. [55] with permission. 
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population. The initial population plays two roles here: to generate the 
weight parameters in the DNN model for both forward and inverse 
design, and to be selected as parents for the following process according 
to their objective function. Since the crossover and mutation operations 
are replaced by the inverse DNN model, the devices’ figure of merit data 
are set as input for the inverse DNN to produce offspring designs 
correlated to the parents. The new data are sent to the population and 
update the weight of DNN. This iteration is repeated several times until 
the termination requirements are satisfied. Several applications, 
including power splitters with different energy ratios and mode con
verters, were successfully demonstrated. The authors also proved that 
compared to the conventional GAN method, their GA-based deep neural 
network can have more comparable results but with a much smaller 
training dataset. 

4. Combining Bayesian Algorithm and Gerchberg–Saxton 
algorithm with neural networks 

In addition to the conventional optimization methods, some other 
strategies, such as Bayesian optimization (BO) [56,57] and Gerch
berg–Saxton (GS) algorithm [58], have been used to assist the photonic 
design. BO is one algorithm that works for global optimization of 
black-box problems, where only the input and output of the model are 
provided while the structure of the function is unknown. For a typical 
BO process, an initial set of candidate solutions are generated first, and 
then the next most possible solutions are generated from the given 
candidates by Gaussian process regression and acquisition functions. In 
another word, the method will suggest the candidate that is most likely 
to have a globally optimized figure of merit. Utilizing all the information 
from previously searched points, this method is more efficient than 
brute-force search or random search. Y. Li et al. have recently 

introduced a self-consisting framework called BoNet [59], which com
bines BO and convolutional neural network (CNN) for electric field 
prediction and also inverse design for optimized chiral responses. The 
geometric parameters that determine the shape of the nanostructure are 
connected with the far-field spectrum and near-field distribution by 
BoNet. As shown in Fig. 4a, considering the required dimension for these 
two kinds of optical response, the dense layer and convolution layer are 
applied for the spectrum prediction and near-field distribution, respec
tively. Then, BO is iteratively applied to enhance the CNN model after 
training. Since it is hard to precisely predict for the parameters that have 
very different response compared to the parameters used to train the 
CNN, the authors utilize BO to improve the prediction accuracy for the 
target functions. To be more specific, BO can recommend new param
eters with a better optical response. However, the CNN may not 
correctly evaluate these new parameters. The discrepancy is described 
by the error of the response obtained from the CNN prediction and FDTD 
simulation, respectively. If a large error occurs, it means that the fea
tures of the new designs (and their neighbors in parameter space) are not 
fully extracted by the CNN, so these data points can be further added to 
the training dataset to reinforce the model and improve the prediction 
accuracy. The far-field circular dichroism optimization at different 
wavelengths and a theoretical circular dichroism of up to 82% are 
confirmed by experiment. Moreover, since the BoNet can also accurately 
predict the near-field distribution, the intrinsic physics for the origin of 
optical chirality can be revealed. The electric-field distribution from 
cathodoluminescence spectroscopy and measured reflection spectra 
match well with the prediction. 

The GS algorithm [58] is one widely used phase-retrieval algorithm 
to calculate the phase profiles with designated intensity distribution at 
the input plane that can generate the desired holographic images at the 
far field. It iteratively replaces the amplitude at the image and far-field 

Fig. 4. Applying Bayesian algorithm and Gerchberg–Saxton algorithm with neural networks for inverse design. (a) Top: Schematic of BoNet for spectrum predication 
using dense layers. Bottom: Schematic of BoNet for near-field prediction using convolution layers and the corresponding feature maps from each layer. (b) Top: 
Schematic of the hybrid model for multi-functional metasurfaces holograms. Bottom: Experiment results of holograms under different combined illumination 
conditions of four frequencies and two polarizations. 
(a) is reproduced from Ref. [59] with permission; (b) is reproduced from Ref. [60] with permission. 
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planes while keeping the calculated phase profiles after Fresnel 
diffraction or fast Fourier transformation. Recently, W. Ma and 
co-workers have integrated this non-gradient iterative optimization al
gorithm with NNs to realize multi-functional metasurfaces holograms 
that can generate distinct holographic images for different incidence 
conditions [60]. The designed unit cell is composed of three nanodisks, 
which can be described by nine structural parameters, including the 
widths and lengths of nanodisks and the gaps between them. The 
developed NNs consist of a forward model, which predicts the complex 
reflection spectrum from the given structure, and an inverse design 
model to retrieve the metasurface design for the desired reflection 
spectrum response. As shown in the top panel of Fig. 4b, the NNs are 
coupled with the GS algorithm to form an end-to-end design loop. First, 
the model retrieves the structure from the phase requirement. Then, 
instead of using the ideal phase value at the metasurfaces plane, the 
authors use the actual optical response calculated by the forward model 
to generate the holographic images at the far field. By considering the 
real but not necessarily the ideal phase response at the metasurfaces 
plane during the iterative GS algorithm, the generated holograms could 
show better qualities than those designed by the conventional GS 
method when various incidence wavelengths and polarizations are 
involved. As shown at the bottom of Fig. 4b, up to 8 different holo
graphic images with different illumination conditions are experimen
tally demonstrated, in very good agreement with the simulation results. 
Moreover, the authors have demonstrated multi-functional focusing 
lenses by integrating gradient-based optimization with NNs. 

5. Conclusion 

In this mini-review, we briefly introduce the working principles of 
the classical inverse design approaches, including the evolutionary al
gorithm and the topology optimization enabled by the adjoint method. 
Then we comprehensively discuss how to combine the conventional 
inverse design approaches and some other optimization methods with 
the NNs to further boost the flexibility, efficiency, and capability of the 
models. From the highlighted works discussed in this review, we can 
recognize that the hybrid inverse design models show unique features 
inherited from both the NNs and optimization methods. We can flexibly 
combine optimization techniques with NNs based on the target 

functions, enabling both tools to perform to their full potential. On one 
hand, the commonly used optimization methods can be utilized to 
further optimize the configuration and hyperparameters of NNs, which 
are usually important but defined manually in NNs. Additionally, some 
discrete variables, such as material choice and category of geometries, 
cannot be directly updated by gradient-based NNs alone. In contrast, this 
task is not an issue for non-gradient-based optimization methods like 
GA. The full-wave simulation and geometry creation, on the other hand, 
take the majority of the computing time during the optimization process. 
However, NNs could be used as extremely fast and accurate electro
magnetic solvers or design generators once they are well trained. To 
make sure that the readers can clearly understand the various hybrid 
models and get inspired to adopt some of the methods for their own 
studies, in Table 1 we have summarized the framework of the hybrid 
models, the specific applications, the working principles and the ad
vantages of the representative works. 

We believe that more real-world applications with on-demand so
phisticated field manipulation, high efficiency, and achievable fabrica
tion features will be realized by the advanced algorithms combining 
optimization methods and artificial intelligence, which own increasing 
flexibility and improved performance. We anticipate that as the inverse 
design methodologies further develop and become more practical, more 
powerful applications, such as multi-functional metasurfaces, all-optical 
neural networks, and on-chip optical computing units will emerge. 
Complicated optical field manipulation, low energy consumption, and 
feasible fabrication features are essential for this vision, and these as
pects need to be considered during the design process. In the near future, 
the hybrid inverse design approaches detailed in this mini-review will 
make the procedure easier and propel optical design to an unprece
dented level. 
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Table 1 
Comparison of different hybrid models for photonic design.  

Hybrid models Specific methods/ 
networks 

Applications Working principles and advantages Reference 

NNþTO/ 
Adjoint 
method 

AAE+VGGnet Thermal emitters Applying the TO to improve the quality of the training data, the performance of the NN 
after the training, as well as the postprocessing so that the designs are robust and 
realistic. 

Ref.31,32 

GLOnets Diffractive metagratings Optimizing the NN by the adjoint method. While the traditional adjoint technique can 
only be used for a limited number of tasks, the trained NN can be used for other tasks of 
the same type. 

Ref.33 

Neural-adjoint 
method 

Metamaterials; Multilayer 
nanoparticles 

Using the adjoint method and the backpropagation of the trained surrogate model to 
perform an accurate inverse design. No need to train additional NN including 
generative model or inverse model. 

Ref.35,36 

NNþGA / Plasmonic waveguides Optimizing the hyperparameters via GA, instead of manual setting based on prior 
experience or laborious commissioning. 

Ref.51 

CPPN + CC Polarization converters and 
multi-channel metasurfaces 

The optimization of metasurfaces with complex functions is realized by NN decoding 
variables from latent space to the candidate structure and GA selecting the meta-atoms 
for the supercells. 

Ref.52,53 

/ RGB color filters and splitters Replacing the GA’s electromagnetic solver with a pre-trained NN, which can 
significantly speed up the inverse design process. 

Ref.54 

/ Power splitters; Mode 
converters 

Replacing the crossover and mutation process of GA by the inverse DNN model, so that 
it can have similar results but with a much smaller training dataset compared to the 
GAN method. 

Ref.55 

NNþBO/GS BoNet Near-field and spectrum 
prediction 

Appling BO to improve the prediction accuracy for the target functions, and then a 
better training dataset is recommended to the training dataset to reinforce the model 
and improve the prediction. 

Ref.59 

NN + GS Multi-channel holograms Using the real phase response retrieved by the NN during the iterative GS algorithm, 
the generated multi-channel holographic images own better qualities than the 
conventional design. 

Ref.60  
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architectures on inverse problems. arXiv preprint arXiv:2101.10763 2021. 

[35] S. Ren, W. Padilla, J. Malof, Benchmarking deep inverse models over time, and the 
neural-adjoint method, Adv. Neural Inf. Process. Syst. 33 (2020) 38–48. 

[36] J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B.G. DeLacy, J. 
D. Joannopoulos, M. Tegmark, M. Soljačić, Nanophotonic particle simulation and 
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